

Project: Chevron

A open-source package to facilitate generation of outputs

Liming Li, technical lead for chevron

Table of contents

- Why we need new tools?
- The {chevron} package to fill the gap!

Why we need new tools?

The NEST packages

NEST is a collection of open-sourced R packages, which enables fast and efficient insights generation under clinical research settings, for both exploratory and regulatory purposes.

Tables & Listings

The NEST packages

Examples

tb1

{rtables}

```
lyt <- basic_table() %>%
split_cols_by("SEX") %>%
analyze("AGE", afun = mean, format = "xx.x")
tbl <- build_table(lyt, adsl)</pre>
```

{rlistings}

```
lst <- as_listing(
   adsl,
   key_cols = "ARM",
   disp_cols = c("AGE", "SEX", "COUNTRY")
)
lst</pre>
```

	F	M	Description of Planned Arm	Age	Sex	Country
mean	33.4	36.2	A: Drug X	32	м	CHN
				34	F	USA
				24	F	CHN
				40	F	RUS
				28	F	PAK
				31	F	CHN
				39	F	RUS

Creating TLG is (still) not easy

```
basic_table(show_colcounts = TRUE) %>%
 split_cols_by_with_overall(arm_var, lbl_overall) %>%
 split_rows_by(
   param_var,
   label_pos = "topleft",
   split_label = lbl_param_var
                                         ) %>%
 summarize_num_patients(
   var = "USUBJID".
   required = "ATOXGR".
                                              needed.
   .stats = "unique_count"
 ) %>%
 split_rows_by(
   grad_dir_var.
   label_pos = "topleft",
                                              code requirements.
   split_label = lbl_grad_dir_var.
   split_fun = trim_levels_to_map(map)
 ) %>%
 count_abnormal_by_worst_grade(
   var = grad_anl_var,
   variables = list(id = "USUBJID", param = param_var, grade_dir = grad_dir_var),
   .formats = list(count_fraction = tern::format_count_fraction_fixed_dp),
    .indent_mods = 4L
 ) %>%
```

- Creating a layout is time consuming.
- TLG Catalog helps a lot with a template, but modification/customization is usually
- Code structure is complicated
- Data have to be processed to fit the

Custom code is not always documented

```
basic_table(show_colcounts = TRUE) %>%
 split_cols_by_with_overall(arm_var, lbl_overall) %>%
 split_rows_by(
   param_var,
   label_pos = "topleft",
                                         Each step might be difficult to understand
   split_label = lbl_param_var
                                     ) %>%
                                         Documentation might be missing in the script
                                     summarize_num_patients(
   var = "USUBJID".
                                       It is difficult to know what to modify to
                                     required = "ATOXGR".
   .stats = "unique_count"
                                         customize the result.
 ) %>%
 split_rows_by(
   grad_dir_var.
   label_pos = "topleft",
   split_label = lbl_grad_dir_var.
   split_fun = trim_levels_to_map(map)
 ) %>%
 count_abnormal_by_worst_grade(
   var = grad_anl_var,
   variables = list(id = "USUBJID", param = param_var, grade_dir = grad_dir_var),
   .formats = list(count_fraction = tern::format_count_fraction_fixed_dp),
    , indent mods = 4L
 ) %>%
```


Script validation is difficult

```
basic_table(show_colcounts = TRUE) %>%
 split_cols_by_with_overall(arm_var, lbl_overall) %>%
 split_rows_by(
   param_var,
   label_pos = "topleft",
   split_label = lbl_param_var
                                        There is no guarantee that the result is correct.
                                    ) %>%
 summarize_num_patients(
                                        The script might not handle edge cases well.
                                    var = "USUBJID".
   required = "ATOXGR".
   .stats = "unique_count"
 ) %>%
 split_rows_by(
   grad_dir_var.
   label_pos = "topleft",
   split_label = lbl_grad_dir_var.
   split_fun = trim_levels_to_map(map)
 ) %>%
 count_abnormal_by_worst_grade(
   var = grad_anl_var,
   variables = list(id = "USUBJID", param = param_var, grade_dir = grad_dir_var),
   .formats = list(count_fraction = tern::format_count_fraction_fixed_dp),
    .indent_mods = 4L
 ) %>%
```

The {chevron} package to fill the gap!

Roche

The {chevron} package

Chevron is built on top of the NEST family to provide robust and easy-to-use interfaces to facilitate the creation of standard output.

Tables & Listings

The structure of {chevron} objects

{chevron} is a collection of high-level functions to create standard outputs for clinical trials reporting with limited parameterisation.

The {chevron} package

User Friendly

- Simple user interface
- Informative log and error messages
- Easy to control
- Available on CRAN

Flexible & Scalable

- Easy to customize
- Can be extended

Robust

- Daily validation
- Extensive testing
- Defensive programming

The run command

Create TLGs in one line

chevron_tlg An object with a preprocess, main and postprocess function **list of data.frames** Representing an ADaM data set.

Table, listing or graph

The run command

Create TLGs in one line: Example

-

run(dmt01, syn_data)

	A: Drug X (N=15)	B: Placebo (N=15)	C: Combination (N=15)	All Patients (N=45)
Age (yr)				
n	15	15	15	45
Mean (SD)	31.3 (5.3)	35.1 (9.0)	36.6 (6.4)	34.3 (7.3)
Median	31.0	35.0	35.0	34.0
Min - Max	24 - 40	24 - 57	24 - 49	24 - 57
Age Group				
n	15	15	15	45
<65	15 (100%)	15 (100%)	15 (100%)	45 (100%)
Sex				
n	15	15	15	45
Male	3 (20.0%)	7 (46.7%)	5 (33.3%)	15 (33.3%)
Female	12 (80.0%)	8 (53.3%)	10 (66.7%)	30 (66.7%)
Ethnicity				
n	15	15	15	45
NOT REPORTED	0	0	2 (13.3%)	2 (4.4%)
HISPANIC OR LATINO	2 (13.3%)	0	0	2 (4.4%)
NOT HISPANIC OR LATINO	13 (86.7%)	15 (100%)	13 (86.7%)	41 (91.1%)
RACE				
n	15	15	15	45
AMERICAN INDIAN OR ALASKA NATIVE	0	2 (13.3%)	1 (6.7%)	3 (6.7%)
ASIAN	8 (53.3%)	10 (66.7%)	8 (53.3%)	26 (57.8%)
BLACK OR AFRICAN AMERICAN	4 (26.7%)	1 (6.7%)	4 (26.7%)	9 (20.0%)
WHITE	3 (20.0%)	2 (13.3%)	2 (13.3%)	7 (15.6%)

14

The run command

Generate log and create TLGs in one line: Example

```
> run(dmt01, syn_data, verbose = TRUE)
Using template: dmt01
Using data: syn_data
Pre args:
   No mapped argument.
Main args:
   arm_var : "ARM"
   lbl_overall : "All {Patient_label}"
   summaryvars : c("AAGE", "AGEGR1", "SEX", "ETHNIC", "RACE")
   stats : list(default = c("n", "mean_sd", "median", "range", "count_fraction"))
   precision : list()
Post args:
```

prune_0 : TRUE

The controlling the run command

Customizing the output

The controlling the run command Customizing the output: Example

run(dmt01, s	svn_data , $summaryvars = c("COUNTRY", "AGE"))$				
	A: Drug X (N=15)	B: Placebo (N=15)	C: Combination (N=15)	All Patients (N=45)	
Country					
n	15	15	15	45	
CHN	8 (53.3%)	10 (66.7%)	8 (53.3%)	26 (57.8%)	
USA	2 (13.3%)	3 (20.0%)	2 (13.3%)	7 (15.6%)	
BRA	1 (6.7%)	0	1 (6.7%)	2 (4.4%)	
PAK	1 (6.7%)	0	1 (6.7%)	2 (4.4%)	
NGA	1 (6.7%)	1 (6.7%)	1 (6.7%)	3 (6.7%)	
RUS	2 (13.3%)	0	2 (13.3%)	4 (8.9%)	
CAN	0	1 (6.7%)	0	1 (2.2%)	
Age					
n	15	15	15	45	
Mean (SD)	31.3 (5.3)	35.1 (9.0)	36.6 (6.4)	34.3 (7.3)	
Median	31.0	35.0	35.0	34.0	
Min - Max	24 - 40	24 - 57	24 - 49	24 - 57	

The chevron_tlg object

Internal structure

Extending {chevron}

Editing a chevron_tlg object


```
preprocess(dmt01) <- function(adam_db, ...) {
    adam_db$ads1 <- adam_db$ads1 %>%
    mutate(COUNTRY = droplevels(.data$COUNTRY)) %>%
    mutate(ARM = reformat(.data$ARM), rule("Treatment" = "ARM A", "Placebo" = "ARM B")) %>%
    mutate(SEX = reformat(.data$SEX, rule(Male = "M", Female = "F")))
    adam_db
```

- The new function must respect some (reasonable) conventions (see doc).
- The other slots (main and postprocessing) can also be edited.
- Data manipulation can also be conducted before passing data to chevron.

Extending {chevron}

Creating a new chevron object

```
my_graph <- chevron_g(</pre>
 preprocess = function(adam_db, ...) {
    adam_db$adlb <- adam_db$adlb %>%
     filter(PARAMCD == "IGA") %>%
     mutate(
        AVAL = .data AVAL / 385,
        AVALU = "mmo]/L"
    return(adam_db)
 main = function(adam_db, ...) {
    ggplot(adam_db_adlb, aes(x = AVISITN, y = AVAL, col = ARM)) +
      stat_summary(fun.data = "mean_cl_boot", geom = c("pointrange")) +
      stat_summary(fun.data = "mean_cl_boot", geom = c("line")) +
      facet_grid(ARM \sim .) +
      theme(legend.position = "none") +
      labs(y = "MM", y = "Visit")
```

run(my_graph, syn_data)

- Define some functions.
- Embed them into a chevron object according to the desired output.
 - chevron_t (table), chevron_g (graph), chevron_1 (listing)

{chevron} adoption in Roche

- Already adopted in Roche!
 - Part of the Next-Gen toolkit to create standard outputs
 - Use by multiple trials, including early and late phase studies
- Testimony from the user
 - Most oncology efficacy and safety analysis are covered
 - Clear documentation to enable really quick generation of output
 - Easy to use and customize, reduce much effort

Using {chevron} today

Where to start

Install {chevron} from CRAN

install.packages("chevron")

Access the documentation

https://insightsengineering.github.io/chevron/latest-tag/

Explore the available templates

https://insightsengineering.github.io/chevron/latest-tag/articles/chevron_catal og.html

Collaborate with us

https://github.com/insightsengineering/chevron

Already covered standard outputs in {chevron}

AE Overview AE frequency by SOC

Demographics AE frequency by SOC and PT

Kaplan-Meier Plot Cox-PH Analysis Time-to-Event and Survival Analysis

Responder Analysis

Patient Dispositions

Summary of Value and Change from Baseline

Acknowledgement

- Thanks to Roche NEST team to make this happen!
- Thanks to Pawel and Joe for the excellent collaboration!
- Special thanks to Benoit, Chenkai, Lena, Tian, Tim, Xiaojin and Xiaoli for all the hard work in project chevron!

Doing now what patients need next